

Agroquímicos y su dinámica ambiental Plaguicidas - Suelo

Ing. Agrón. Daniel A. GRENÓN Cátedra de Agromática dgrenon@fca.unl.edu.ar

VOLATILIDAD

Es la medida de la tendencia de una sustancia líquida a convertirse en gas. Se estima con la presión de vapor (mm Hg o Torr, atm, Pa).

Presión de vapor: presión a la que a cada temperatura la fase líquida y vapor se encuentran en equilibrio dinámico. A mayor temperatura ambiente, mayor es la presión de vapor

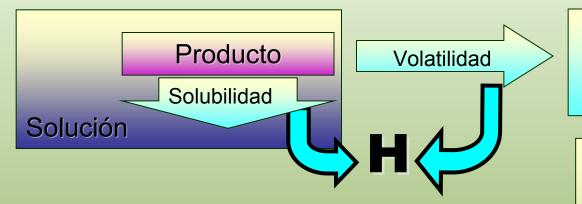
Etanol: 59,000000000 mm Hg 2,4-D éster: 0,002300000 mm Hg 2,4-D amina: 0,000000550 mm Hg Glifosato: 0,000000075 mm Hg

mm Hg	mPa	Volatilidad
< 10 ⁻⁶	< 0,133	Baja
10 ⁻⁶ – 4.10 ⁻⁵	0,133 - 5,2	Intermedia
> 4.10 ⁻⁵	> 5,2	Alta

Sales y Ácidos

Fenoles y Ésteres

SOLUBILIDAD


Cantidad de producto que entra en solución acuosa.
Un producto más soluble en agua presentará:
una mayor lixiviación en el suelo,
menor capacidad de absorción y adsorción de una superficie y también
menor capacidad de volatilizarse.

Se expresa en ppm (mg/l)

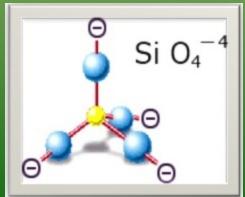
Azúcar: 21000 mg/l

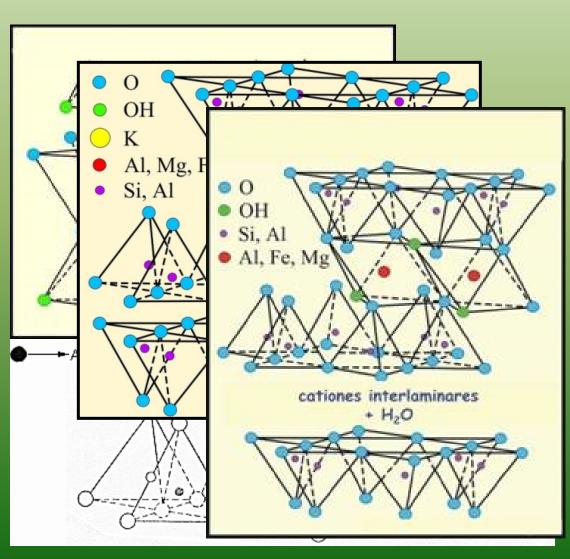
Solubilidad	Clasificación		
<0.10	Insoluble		
0.1–1	Poco soluble		
1–10	Moderadamente soluble		
10–100	Bastante soluble		
>100	Altamente soluble		

	ILIDAD DEL GUICIDA	RANGOS DEL VALOR (atm m³/mol)		
No volátil	El plaguicida	Menor a 3 x 10 ⁻⁷	Constante (H) BAJA • Presión de vapor baja	
Baja volatilidad	puede disolverse en agua	3 x 10 ⁻⁷ a 1 x 10 ⁻⁵	Alta solubilidad Tiene potencial para lixiviarse	
Volatilidad moderada		1 x 10 ⁻⁵ a 1 x 10 ⁻³	Constante (H) ALTA • Presión de vapor alta	
Alta volatilidad	El plaguicida puede evaporase	Mayor a 1 x 10 ⁻³	 Solubilidad baja Tiene potencial alto para volatilizarse del suelo húmedo 	

Aire

Constante de la ley de Henry: es el valor de la relación entre la presión de vapor y la solubilidad en agua.


$$H = \frac{PrVap \ PesoMol}{760 \ Solub}$$


$$K_{AW} = \frac{C_{A}}{C_{W}} = \frac{H}{R T (°K)}$$

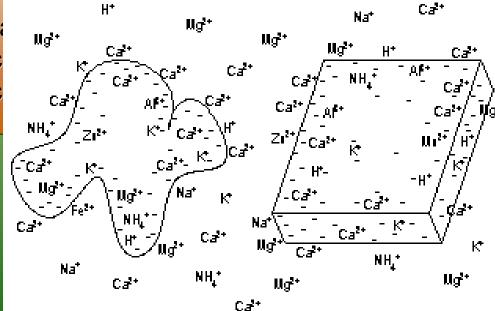
SUELO



SUELO

MO: Material de origen biológico de cualquier naturaleza, que se encuentre sobre o dentro del suelo, vivo, muerto o en estado de descomposición.

MO biótica: microfauna, bacterias, hondos


Materia orgánica

actin

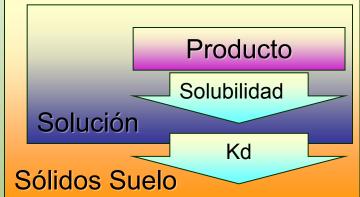
MO

-frac

-frac

Arcilla

Alta CIC.


Alta capacidad tampón.

Capacidad de quelar metales.

Acción sobre plaguicidas.

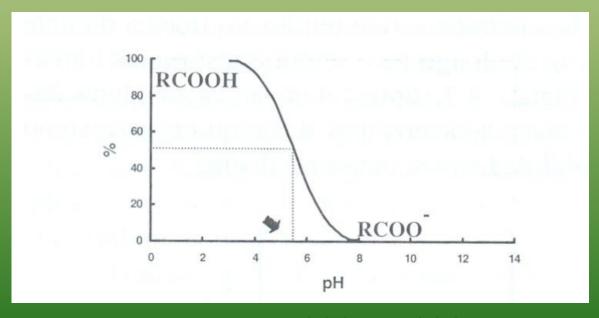
Disponibilidad de nutrientes.

Volatilidad Aire

$$K_d = \frac{C_s}{C_w}$$

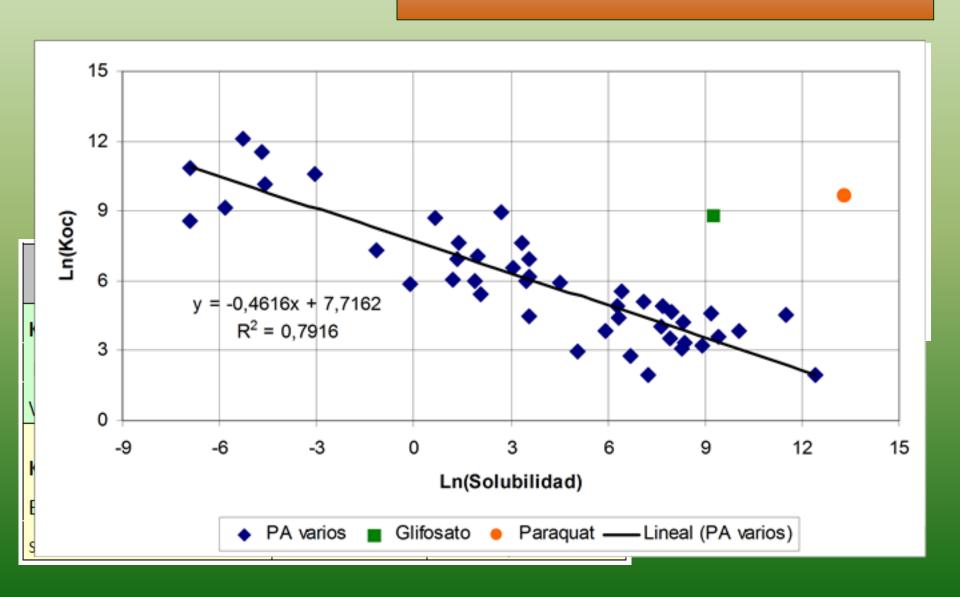
$$\frac{C_{w+s}}{C_A} = \frac{C_w}{C_A} \left(\frac{1}{r} + K_d \right)$$

La volatilidad desde Suelo Húmedo está afectada, además por la adsorción a los coloides edáficos (arcillas y materia orgánica) y por el contenido de agua (r = W/S).


C _{water+soil} / C _{air}	Volatilidad desde suelo húmedo
$< 1 \times 10^3$	Rápido movimiento desde suelo a aire
1 x 10 ³ - 1,5 x 10 ⁴	Volátil
1,5 x 10 ⁴ - 10 ⁵	Intermedio
10 ⁵ - 2 x 10 ⁶	Ligeramente volátil a no volátil
> 2 x 10 ⁶	No volátil desde suelo húmedo

SUELO

Constante de ionización


Ka = [RCOO-] / [RCOOH]

 $pH = pKa + log ([RCOO^{-}] / [RCOOH])$

SUELO

SUELO/BIOTA

Kow

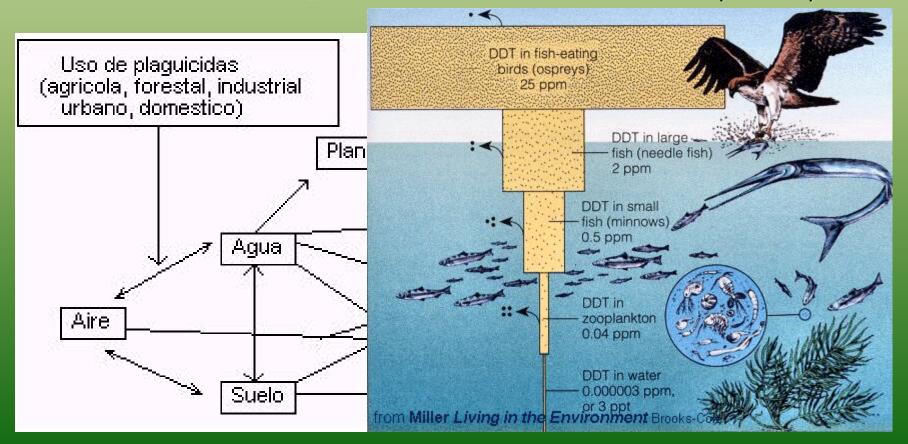
Kow= Concentración herbicida disuelto en octanol Concentración herbicida disuelto en agua

El coeficiente de partición octanol /agua, es una medida de cómo una sustancia química puede distribuirse entre dos solventes inmiscibles,

agua como solvente polar universal

y el octanol como solvente no polar representando a las grasas.

Muchos procesos de reparto son dirigidos por el log Kow, por ejemplo la adsorción en suelos y sedimentos y la bioconcentración en organismos.


Kow alto (valor > 5)	Kow bajo (valor < 1)
El plaguicida puede fijarse con firmeza a MO, sedimento y biota.	El plaguicida puede no fijarse en materia orgánica
El plaguicida puede bioacumularse en grasa corporal de animales	El plaguicida puede moverse en aguas superficiales, acuíferos y aire.
La vía de exposición al herbicida puede ser por la cadena alimenticia	La vía de exposición al plaguicida puede ser la inhalación.

BIOTA

Bioconcentración/Bioacumulación

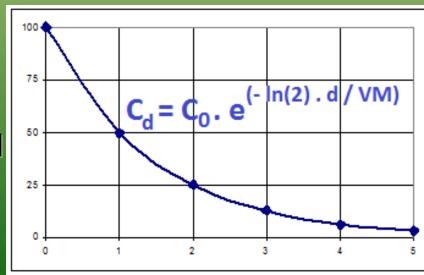
El factor de bioconcentración (BCF) es un coeficiente de partición estimado por el cociente entre la concentración de la sustancia en el organismo y la concentración de la sustancia en el medio, dentro de un sistema en estado de equilibrio químico.

Transformación/Degradación

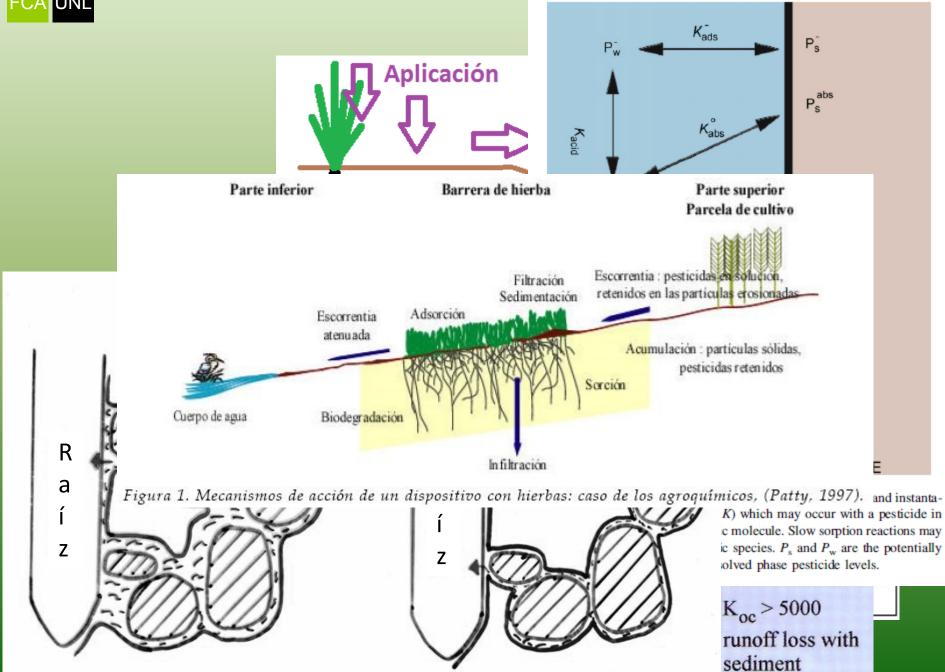
Fotólisis: Acción de la Energía Lumínica

Oxidación: Adición de Oxígeno Reducción: Adición de Hidrógeno

Hidrólisis: Partición del agua en grupos hidroxilos


Isomerización: Cambios en el orden espacial de los átomos

Conjugación: Adición de la molécula de otra sustancia


Degradación microbiológica

PERSISTENCIA

Vida Media: tiempo requerido para que una sustancia llegue a la mitad de la concentración inicial

ESTE FENÓMENO SE PUEDE ESTUDIAR ...

MONITOREANDO
SISTEMAS DE
PRODUCCIÓN
CON ANÁLISIS QUÍMICOS

MONITOREANDO Y
PLANIFICANDO SISTEMAS
DE PRODUCCIÓN
CON INDICADORES

ORIENTAN QUÉ, DÓNDE Y CUÁNDO

VERIFICAN

COSTOSO, LABORIOSO, EXACTO pero TARDÍO SIRVE para MITIGACIÓN ACCESIBLE, SENCILLO NO ES EXACTO pero SIRVE para PREVISIÓN

COMPLEMENTARIOS, NO SON EXCLUYENTES

Indicadores de Propiedades del FITOSANITARIO

Indicadores de Condiciones y dinámica del AMBIENTE

ÍNDICE

Indicadores de TECNOLOGÍAS de APLICACIÓN

Un <u>índice</u> sirve para describir una situación compleja de manera sencilla

Sintetiza la información de diversas variables (indicadores) que afectan el agroecosistema que se quiere diagnosticar o planificar.

FCA UNL

Se pretende ofrecer
a los profesionales un útil de
DIAGNÓSTICO y de PLANIFICACIÓN
para ayudar a los productores
a adaptar sus prácticas agrícolas
a los principios de la

Producción Agropecuaria Integrada:

Biología — PRODUCTIVIDAD

Tecnología — PRACTICIDAD

Economía — RENTABILIDAD

Ambiente — SUSTENTABILIDAD

Sociedad — ACEPTABILIDAD

¿Qué estamos desarrollando?

<u>PRESENCIA</u>

Dosis Unidades tóxicas

Propuesta: IIRAmb

CONTAM. AGUA SUBTERRÁNEA GUS Toxicidad hombre Riesgo de Lixiviación Posición de aplicación

CONTAM. AGUA SUP.

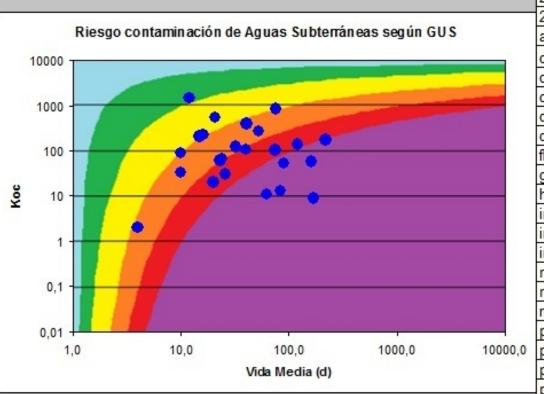
Vida media
Toxicidad Acuática
Deriva
Riesgo de Escurrimiento
Posición de aplicación

Posición relativa sitio tratado-población

CONTAM. AIRE

Vida media
Volatilidad
Toxicidad hombre
Posición de aplicación

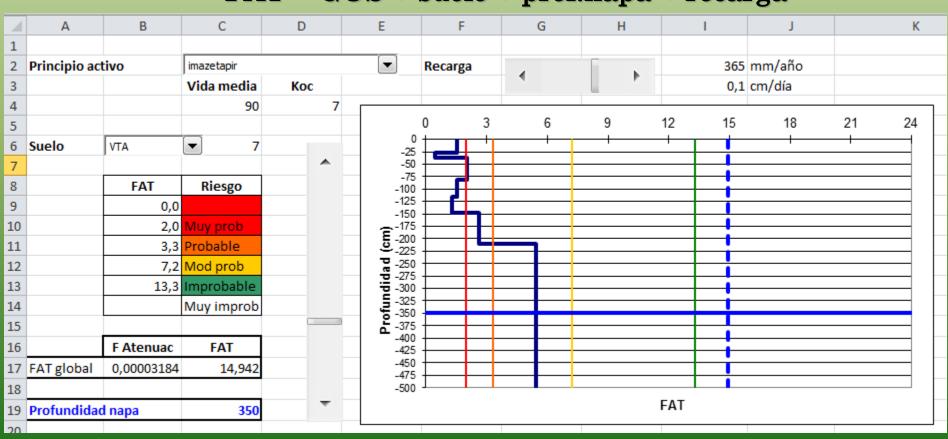
Índice del Riesgo para zonas periurbanas, escuelas rurales, etc.


INDICADORES e ÍNDICES INTEGRADOS:

INDICADOR	INDICE						
INDICADOR	GUS	FAT	RIPEST	RAire	RAgua Sup	RAgua Subt	RPeriUrb
del Principio Activo							
Vida media	X	X		X	Х	Х	X
Koc	Х	Х				Х	X
DL50 mamíferos			Х				X
DL50 abejas			X				
Kh				X			X
IDA				Х		Х	X
Toxicidad acuática					X		
del Clima							
Recarga acuífero		Х					X
Dirección dominante del viento							X
del Suelo							
Profundidad		X					X
Densidad		Х					X
Capacidad de campo		Х					X
Materia orgánica		Х				Х	X
Reacción (pH)						X	X
Textura					X	Х	X
del Sitio							
Pendiente (inclinación)					X	X	X
Pendiente (orientación)							X
Profundidad napa freática		Х					X
Distancia a agua superficial					X		X
Distancia a población vulnerable							X
Orientación a la población							X
de la Tecnología de Aplicación							
Dosis			X				X
Cobertura del cultivo				X	X	X	X

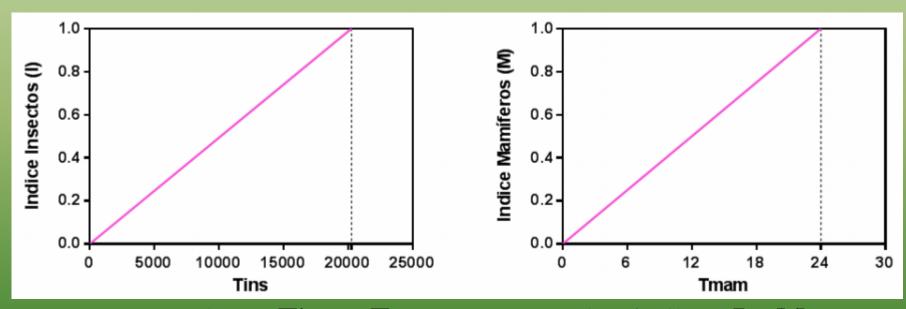
GUS (Gustafson, 1989)

Riesgo de movilidad del plaguicida en un suelo hacia el agua subterránea, basado en su vida media y su Koc


Haddelden							
Herbicidas							
Principio activo	DT50 suelo	Koc	GUS				
2,4 D	10,0	88,4	2,05				
2,4-DB	16,0	224	1,99				
atrazina	75,0	100	3,75				
clodinafop-propargil	0,8	1466	-0,08				
clorimuron etil	40,0	106	3,16				
clorsulfuron	160,0	57	4,95				
dicamba	4,0	2	2,23				
diuron	75,5	813	2,05				
flurocloridona	53,0	270	2,70				
glifosato	12,0	1435	0,91				
haloxifop-R	23,9	66	3,01				
imazapic	120,0	137	3,87				
imazapir	170,0	8,8	6,82				
imazetapir	90,0	52	4,46				
mesotrione	32,0	122	2,88				
metsulfuron metil	10,0	32	2,49				
nicosulfuron	26,0	30	3,57				
paraquat	3000,0	1000000	-6,95				
picloram	82,8	13	5,54				
prometrina	41,0	400	2,25				
prosulfuron	62,1	11	5,31				
quizalofop etil	20,8	540	1,67				
saflufenacil	20,0	20	3,51				
S-metolaclor	15,0	200	2,00				
topramezone	218,0	171	4,13				
triasulfuron	23,0	60	3,03				

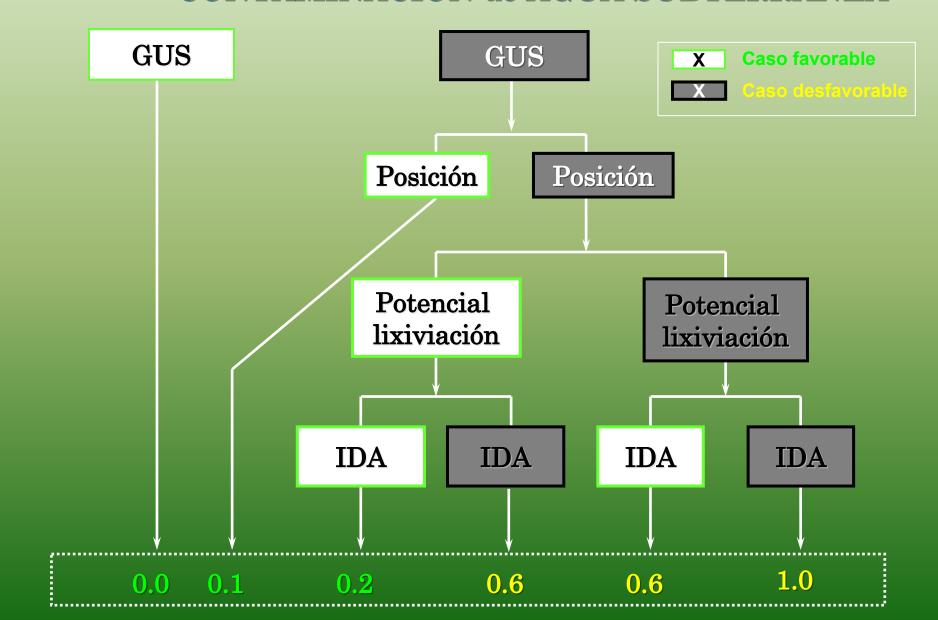
FAT: Factor de Atenuación (Rao et al., 1985)

Considera los mismos parámetros del fitosanitario que el GUS, pero además toma en cuenta características del suelo, de la profundidad de la napa y la recarga anual del acuífero:


FAT = GUS + suelo + prof.napa + recarga

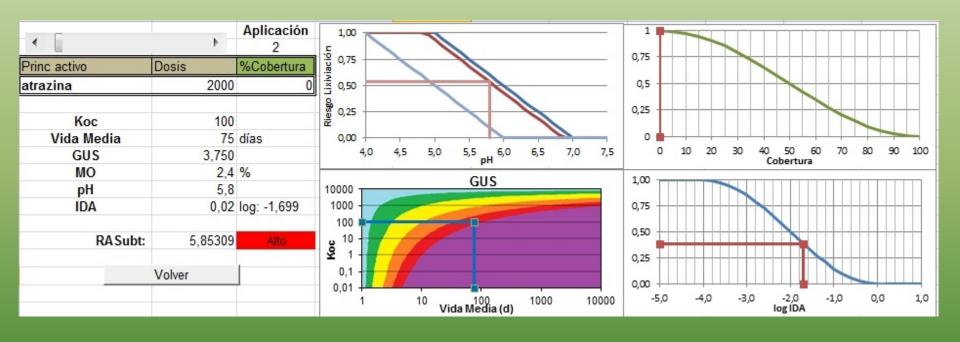
RIPEST: Unidades de Toxicidad (Ferraro et al., 2003)

Utiliza la **toxicidad** del plaguicida, medido en **Unidades de toxicidad (UT)** para dos grupos de organismos: **insectos (Tins) y mamíferos (Tmam)**. El valor de UT se basa en la **LD 50 aguda (48 h)**.

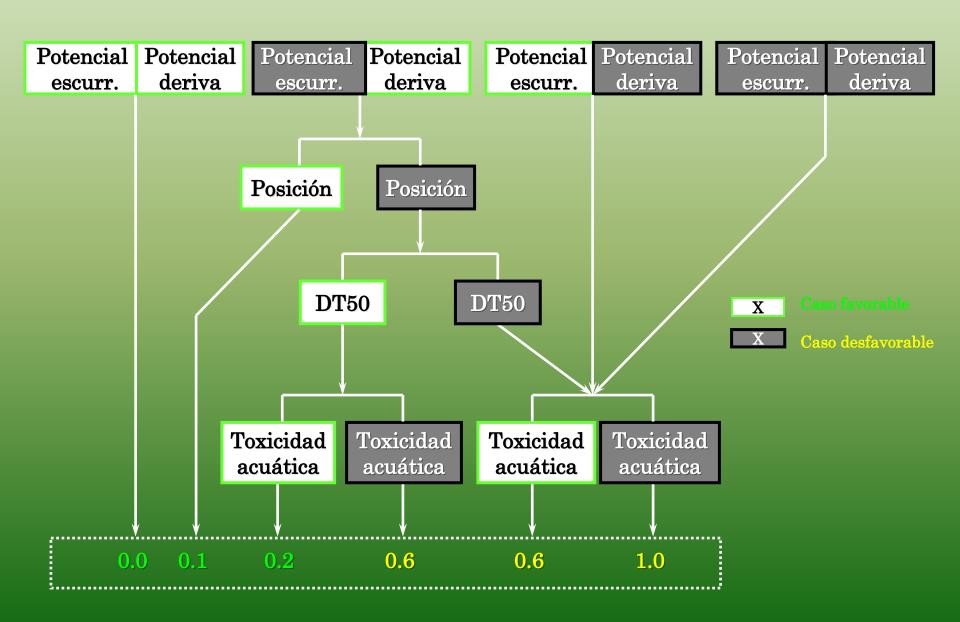


Los valores **Tins** y **Tmam** generan los índices **I** y **M**, que se integran en un índice **P** según reglas de lógica difusa.

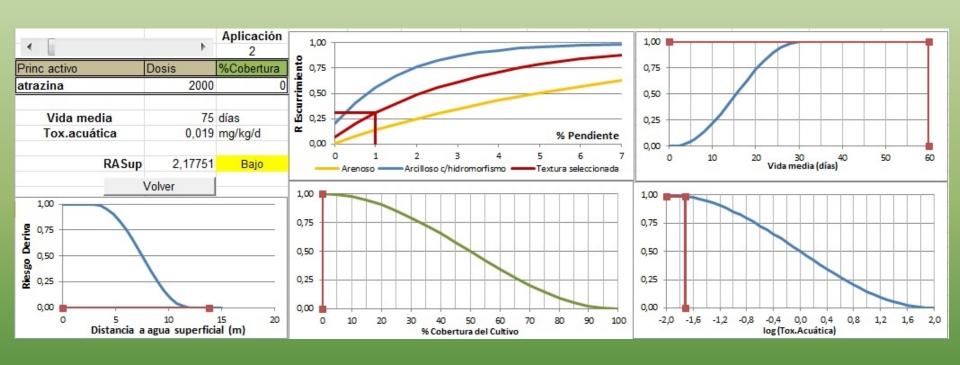
http://malezas.agro.uba.ar/ripest/


FCA UNL

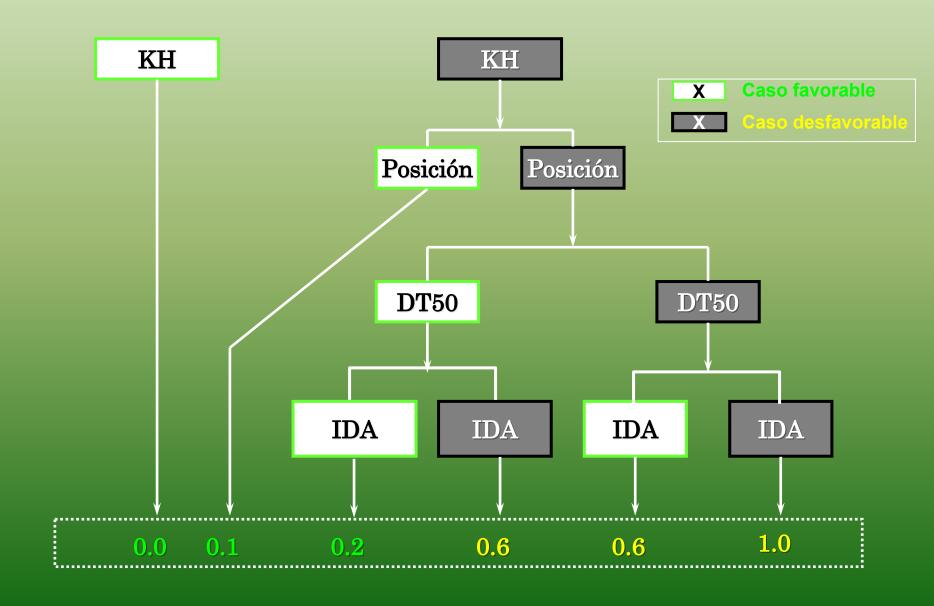
IPEST - Lógica difusa para el cálculo del riesgo de CONTAMINACIÓN de AGUA SUBTERRÁNEA



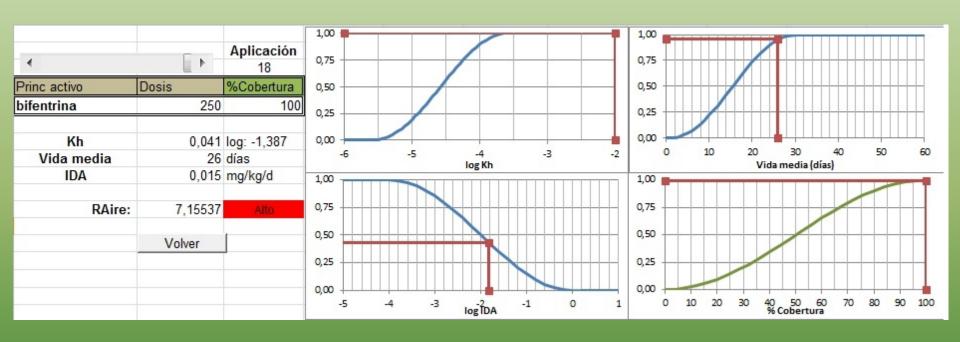
IPEST - Lógica difusa para el cálculo del riesgo de CONTAMINACIÓN de AGUA SUBTERRÁNEA



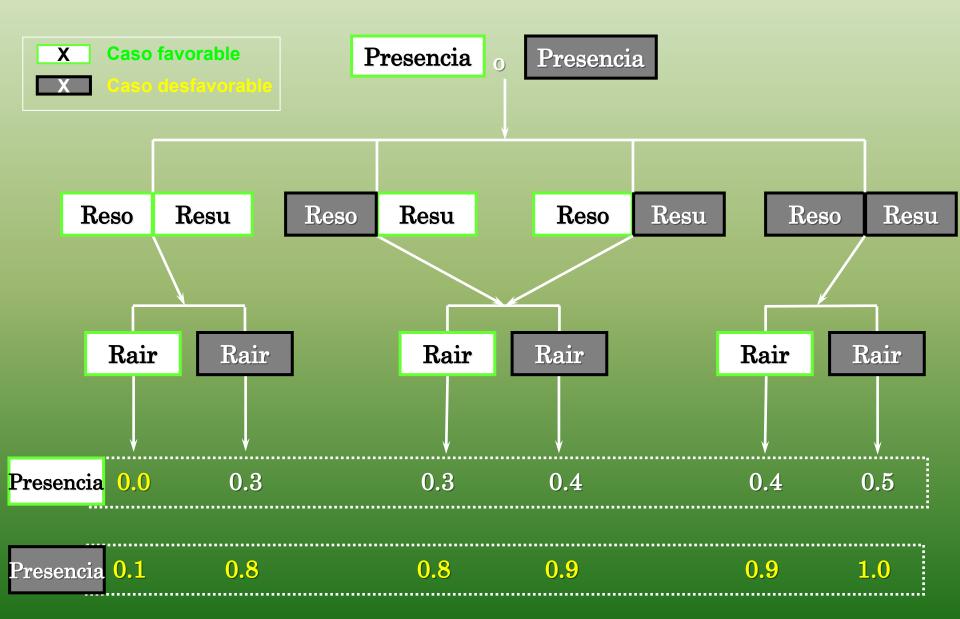
IPEST - Lógica difusa para el cálculo del Riesgo de CONTAMINACIÓN de AGUA SUPERFICIAL



IPEST - Lógica difusa para el cálculo del Riesgo de CONTAMINACIÓN de AGUA SUPERFICIAL

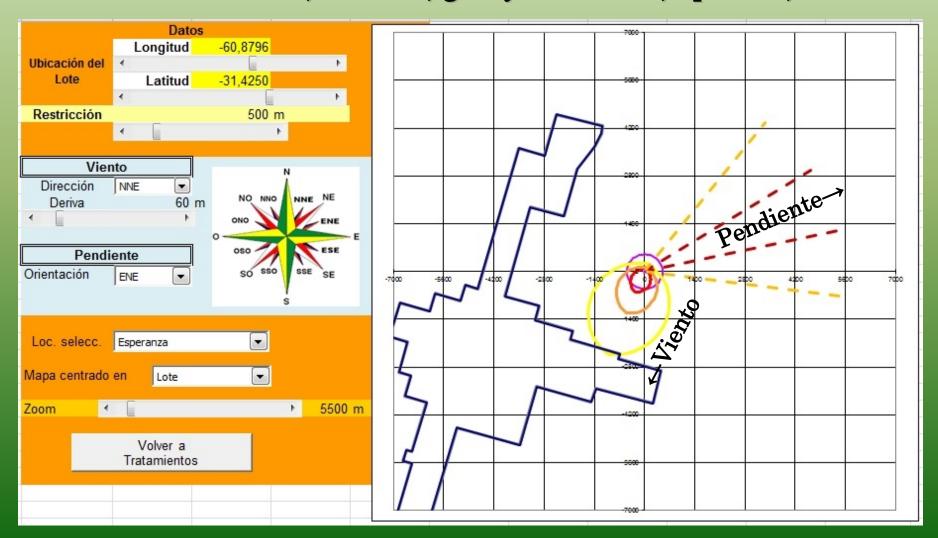


IPEST - Lógica difusa para el cálculo del Riesgo de CONTAMINACIÓN del AIRE

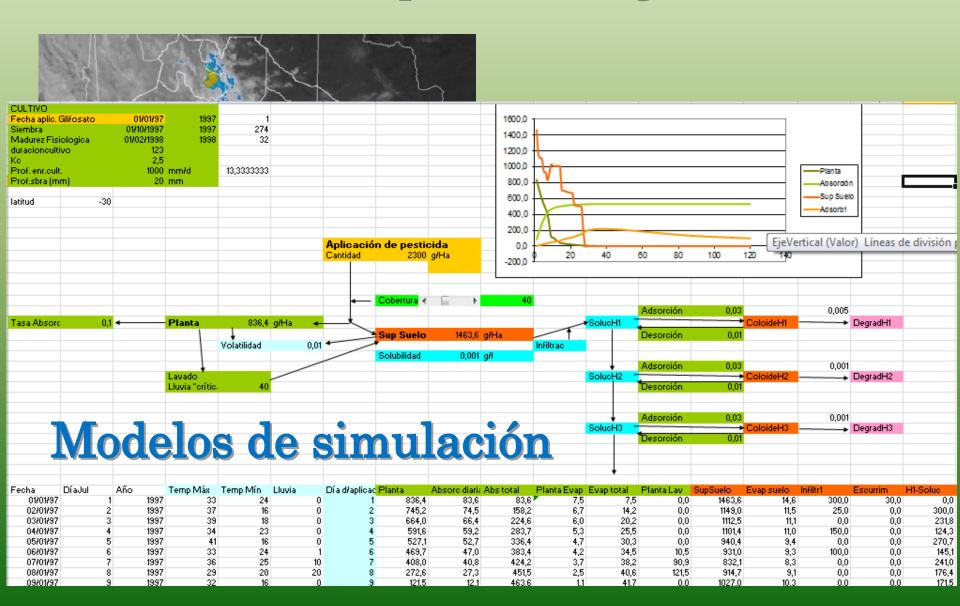


IPEST - Lógica difusa para el cálculo del Riesgo de CONTAMINACIÓN del AIRE

IPEST - Integración de Índices: RIESGO GLOBAL

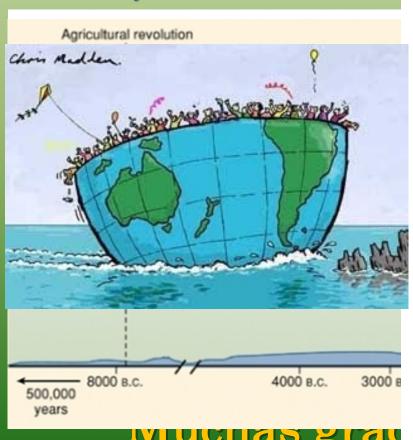

IPEST - Integración de Índices: RIESGO GLOBAL

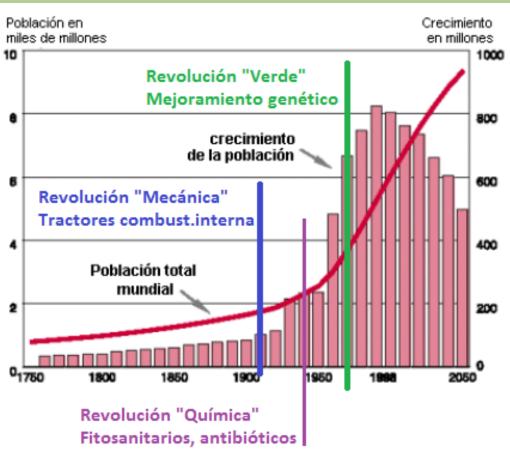
▼ □ Princ activo	Dosis	Aplicación 2 %Cobertura		9 —			
atrazina	2000	0	atra	7 📙			
RPres	0,94753	Extrem.Bajo	Indice de Riesgo Ambiental	6 —		_	■ Muy Alto
RAire	0,00000		- SS	5 —			■ Alto
RASup	2,17751	Bajo	<u>a</u>	4			Moderado
RASubt	5,85309	Alto	dice	з 📙			Bajo
RGlobal:	2,42757	Bajo	ڪ.	2 —			■ Muy bajo ■ Extr.bajo
V	olver			1 0 Presencia	Mile Super.	Suth. Global	


IIRAmb v.0.5 – Riesgo en Zonas Periurbanas

... o en cualquier otra zona con población vulnerable: Escuelas rurales, feedlots, granjas avícolas, apiarios, etc.

Próximos pasos a integrar...




¿Qué huella dejaremos?

¿Degradación, contaminación?

¿O recuperación, conservación, valoración de espacios para la producción de

alimentos y la calidad de vida?

