

SANTA FE, 13 de diciembre de 2022

VISTAS las actuaciones vinculadas con la elevación de la planificación académica del Curso Intensivo de Verano "Introducción a la Optimización en Ingeniería de Procesos" del Departamento de Ingeniería de Procesos;

CONSIDERANDO:

El visto bueno de Secretaría Académica de esta Facultad, como así también lo aconsejado por la Comisión de Enseñanza;

EL CONSEJO DIRECTIVO DE LA FACULTAD DE INGENIERÍA QUÍMICA RESUELVE:

ARTICULO 1º.- Aprobar el programa analítico, bibliografía y planificación del Curso Intensivo de Verano "Introducción a la Optimización en Ingeniería de Procesos", para todas las carreras de pregrado y grado de la Facultad de Ingeniería Química que, como ANEXO, forman parte integrante de la presente.

ARTÍCULO 2º.- Designar como Profesor Responsable del dictado del Curso, al Dr. Rodolfo DONDO.

ARTÍCULO 3º.- Conformar la Mesa Examinadora con los siguientes docentes:

Titulares: Dr. Rodolfo DONDO, Dr. Eduardo ADAM y Dr. Carlos VERA

ARTÍCULO 4º.- Inscríbase, notifíquese y comuníquese. Cumplido pase a Mesa de Entradas para su archivo.

RESOLUCIÓN CD № 674

ANEXO

Planificación Académica

Nombre del curso de verano: "Introducción a la Optimización en Ingeniería de Procesos"

Departamento: Departamento de Ingeniería de Procesos / Área: Simulación Optimización y Control de Procesos / Área Disciplinar: Optimización de Procesos.

Carrera/s: Ingeniería Química e Ingeniería en Alimentos

Carácter: Curso extracurricular de verano

Correlatividades: Para alumnos avanzados de Ingeniería Química e Ingeniería en Alimentos.

Haber cursado Transferencia de Energía y Operaciones (TEO).

Haber cursado Transferencia de Materia y Operaciones (TMO).

Período de dictado y Número de alumnos estimado: Primera mitad de marzo del 2023.

Carga horaria semanal y total del curso: 10 hs semanales, 20 hs totales.

Responsable: Dondo, Rodolfo – Profesor Adjunto / Investigador Independiente - CONICET.

Plantel Docente:

Dondo, Rodolfo – Profesor Adjunto / Investigador Independiente - CONICET.

Adam, Eduardo – Profesor Titular, dedicación Exclusiva.

Tribunal Examinador:

Titulares: Dr. Rodolfo Dondo, Dr. Eduardo J. Adam y Dr. Carlos Vera.

Objetivos: Introducir herramientas computacionales que utilizan optimización matemática en el análisis, rediseño y optimización de procesos químicos.

Objetivos particulares:

Explicar los fundamentos de optimización y de las técnicas algorítmicas relevantes.

Realizar una breve introducción al modelado matemático de procesos químicos y el planteo de diseño de problemas de procesos como programas matemáticos.

Aplicación de los conceptos vertidos a ejemplos ilustrativos.

Metodología: La introducción a los conceptos las herramientas informáticas está cargo del docente que desarrollará ejemplos y aplicaciones de las mismas en clases presenciales o virtuales según la disponibilidad de espacio físico en la Facultad y en consenso con los alumnos. A posteriori los alumnos deberán completar un examen en el que se evaluará la comprensión por parte de ellos de los conceptos vertidos en el curso.

Programa Analítico:

Tema 1: Introducción y formalismos matemáticos.

Estados, parámetros y constantes.

Clasificación de modelos.

Estados estacionarios y transientes.

Tema 2: Métodos de optimización:

Programación lineal.

Programación no lineal.

Programación mixta entera-lineal.

Programación mixta entera-no-lineal.

Programación dinámica o control óptimo.

Tema 3: Software

Valide la firma de este documento digital con el código RDCD_FIQ-1130198-22_674 accediendo a https://servicios.unl.edu.ar/firmadigital/

Programas de cálculo numérico. MATLAB y/o GNU OCTAVE.

Programas de modelado algebraico. GAMS.

Software para resolución de problemas de control óptimo. GPOPS.

Tema 4: Aplicaciones

Programación lineal:

Diseño de secuencia de actividades de una refinería. Problema de optimización de una mezcla.

Programación no lineal:

Determinación los coeficientes de reacción para el craqueo catalítico de gas de petróleo en subproductos de interés.

Optimización de la conversión en un reactor de producción de amoníaco.

Programación mixta entera-lineal:

Resolución de un problema de diseño óptimo de oleoducto. Mezcla óptima de aceites vegetales para su comercialización.

Programación mixta entera-no-lineal:

Formulación mixta entera no lineal de la síntesis de una secuencia de destilación con integración de la transferencia de calor.

Localización optima de la alimentación en una columna de destilación.

Programación dinámica o control óptimo:

Control óptimo de un reactor fed-batch para la producción de proteínas por medio de bacterias recombinantes.

Mezcla óptima de catalizadores en un reactor tubular.

Nómina de Trabajos Prácticos: Una guía de trabajos prácticos que involucra la resolución numérica de ejemplos mencionados en el tema 4.

Bibliografía:

Biegler, L.T.; Grossmann, I.E.; Westerberg, A.W. Systematic methods for chemical process design. Prentice Hall, Old Tappan, N.J. (1996).

Dondo, R. Apuntes del Cursillo (2022).

Martin, M. (Ed). Introduction to Software for Chemical Engineers. CRC Press (2015).

Cronograma tentativo de desarrollo de actividades:

Semana	Clases	Temas Incluidos	Horas asignadas	Lugar	Número de Comisiones	Docentes
1	Teoría (3 clases)	Tema 1 Tema 2 Tema 3	4 hs 3 hs 3 hs	Aula	1	Dondo
2	Problemas (3 clases)	Tema 4 Resolución de guía práctica ydel examen	4 hs 6 hs	Aula Aula	1	Dondo /Adam Adam

Previsiones de seguridad durante las actividades: Se cumplirá con los protocolos de seguridad de la Facultad.

Régimen de Regularidad y Promoción del curso:

Requisitos de Regularidad: Se exige el 75% de asistencia a las clases previstas.

Requisitos para la Aprobación del Curso: Los alumnos serán evaluados mediante un trabajo monográfico en el que se integrarán los conceptos vertidos a lo largo del curso.

Tanto la regularidad y la promoción del curso se rigen por la resolución CD FIQ 418-13.

En todos los casos, el puntaje y la nota se ajustarán a las Resoluciones "H.C.S." n° 233/2006 y "C.D." FIQ n°611/09.

Expte. n° FIQ-1130198-22 Res. CD n° 674/22

Las Malvinas son argentinas

Resolución CD 611/09.	Resolución CS 233/2006	
Entre 1 y 14	corresponde 1	1 INSUFICIENTE
Entre 15 y 24	corresponde 2	2 INSUFICIENTE
Entre 25 y 34	corresponde 3	3 INSUFICIENTE
Entre 35 y 44	corresponde 4	4 INSUFICIENTE
Entre 45 y 57	corresponde 5	5 INSUFICIENTE
Entre 58 y 64	corresponde 6	6 APROBADO
Entre 65 y 74	corresponde 7	7 BUENO
Entre 75 y 84	corresponde 8	8 MUY BUENO
Entre 85 y 94	corresponde 9	9 DISTINGUIDO
Entre 95 y 100	corresponde 10	10
		SOBRESALIENTE

